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Abstract

Background: One challenge in reusing clinical data stored in electronic medical records is that these data are
heterogenous. Clinical Natural Language Processing (NLP) plays an important role in transforming information in
clinical text to a standard representation that is comparable and interoperable. Information may be processed and
shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type
system for clinical NLP that enables interoperability between structured and unstructured data generated in
different clinical settings.

Results: We describe a common type system for clinical NLP that has an end target of deep semantics based on
Clinical Element Models (CEMs), thus interoperating with structured data and accommodating diverse NLP
approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture)
and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge
Extraction System) versions 2.0 and later.

Conclusions: We have created a type system that targets deep semantics, thereby allowing for NLP systems to
encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface
semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep
clinical semantics as the point of interoperability with more structured data types.

Keywords: Natural Language Processing, Standards and interoperability, Clinical information extraction, Clinical
Element Models, Common type system
Background
Electronic medical records (EMRs) hold immense prom-
ise for improving both practice and research. Area 4 of
the Strategic Healthcare IT Advanced Research Project
(SHARP 4, or SHARPn) aims to reuse data from the
EMR, analyzing records on a large scale – an effort
known as high throughput phenoytyping. Many large-
scale applications are dependent on high throughput
phenotyping, such as characterizing the prevalence of a
disease, or finding patients who fit the criteria for a clin-
ical or epidemiological study. A prerequisite is that
information across patients, areas of practice, and insti-
tutions must be comparable and interoperable. SHARP
4 has adopted Intermountain Healthcare’s Clinical
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Element Models (CEMs) as the standardized format for
information aggregation and comparison. This represen-
tation is both concrete and specific, yet allows for some
of the ambiguity that is inherent in clinicians’ explan-
ation of a clinical situation.
However, a significant amount of information in the

EMR is not available in any form that could be easily
mapped to CEMs. It is no surprise that health care
professionals prefer to record a significant proportion of
their information in the format of human language,
rather than more structured formats like CEMs. There-
fore, Natural Language Processing (NLP) techniques are
necessary to tap into this extensive source of clinical
information. The goals for NLP in SHARPn are to
normalize information from clinical text into the struc-
tured CEMs, which are more conducive to computation
at a large scale.
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A type system specifies data structures that may be
used for the processing and sharing of information. In
this work, we define a type system whose key innovation
is that it implements a comprehensive model of clinical
semantics types, based on CEMs. This deep semantic
target is integrated with a comprehensive brush of types
for existing language analysis tools, allowing the type
system to be used for arbitrary clinical use cases and to
be compatible with a diversity of underlying NLP
approaches. Therefore, we call it a common type system,
with highly structured output semantics intended to
interoperate with structured data from the EMR. Add-
itionally, NLP components that use the type system will
be interchangeable with each other. The type system was
initially designed for practical NLP use in UIMA (Un-
structured Information Management Architecture [1]),
which allows for flexible passing of input and output
data types between components of an NLP system.
Our preliminary work [2] has been fully adopted by

Mayo Clinic’s popular open source NLP tool, cTAKES
(clinical Text Analysis and Knowledge Extraction System
[3]), as of cTAKES 2.0. The current work presents a full
picture of the type system, alongside a thorough example
of how the type system may be used in practice to house
SHARPn-style CEMs. Our description is consistent with
the implementation in cTAKES v2.5 (http://sourceforge.
net/projects/ohnlp/files/cTAKES/).

UIMA and type systems
UIMA was originally designed by IBM to process text,
speech, or video [1]. Here, we concern ourselves with
clinical text as our domain of input. Each clinical docu-
ment that is processed within UIMA is automatically
marked up (annotated) by components called Analysis
Engines, which are often arranged in a pipeline. Analysis
Engines may be interchanged if they solve the problems
and annotate the data in the same way.
However, the structure of the markup must be defined

in order for Analysis Engines to be interoperable. A type
system defines the structure for possible markup, provid-
ing the necessary data types for downstream com-
ponents to make use of partially processed text, and
gives upstream components a target representation for
markup data. For example, after sentence detection, a
document will have identified types called SENTENCE;
after tokenization, a document will have identified types
called WORDTOKEN. Each type may have associated
features, which give additional information about the
structure. For example, a WordToken could have an
associated part-of-speech VB (verb). In this article, we
will use “feature” and a related term, “attribute,”
interchangeably.
The data are then passed between Analysis Engines in

an efficient framework, the Common Analysis Structure
(CAS), which includes the original document, the results
of the analysis, and indices for efficient searching of
these results. To facilitate outputs from and inputs to
UIMA, the CAS can also be efficiently serialized and de-
serialized. With this architecture, UIMA enables inter-
operability between Analysis Engines and encourages a
development of “best-of-breed” components.
All UIMA-based techniques will have a type system

[4-6], and other tools (such as the General Architecture
for Text Engineering (GATE) [7]) typically have analo-
gous schemata for artifacts. Most of these type systems
encode the same basic information as our common type
system, including types for storing text span annotations,
syntax, and document annotations. In a few cases, types
and features (e.g., a LIST structure) were introduced into
our common type system based on an analysis of these
systems.
The reported work within SHARP 4 is an attempt to

provide a common type system for diverse NLP use
cases centering around clinical texts and domain seman-
tics. Therefore, the our most significant contributions
are the extensive semantic model based on CEMs and
the separation between textual semantic types and refer-
ential (referring to the real-world) semantic types. These
contributions enable a development of diverse technolo-
gies that serve different clinical use cases.
Deep semantics with clinical element models
From a linguistic perspective, this common type system
embeds a deep semantic representation analogous to
those that have been used in the computational seman-
tics and dialogue systems communities [8,9]. It distin-
guishes between semantic content that refers to real-
world phenomena and the textual surface form used to
communicate the semantics. However, we might expect
the impact of a mature, deep semantic representation
for Clinical NLP to be much greater, since this is an en-
abling technology for many downstream tasks like pa-
tient classification and high-throughput phenotyping.
Designing the type system to account for these deep
semantics as output gives room for technological inno-
vations around the CEM structure.
In addition to providing a well-developed semantic

data model, the common type system provides a wide
range of data types to bridge from text and linguistic
structure to deep semantics. In doing so, it allows for
downstream access to both the more raw, textual data
types and the deeper semantic representation.
For SHARPn, six “core CEMs” have been identified

and are under continuing development: Anatomical
Sites, Diseases and Disorders, Signs and Symptoms, Pro-
cedures, Medications, and Labs. A specific CEM for
“cough” would have the same basic structure as any
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other Signs and Symptoms, as defined by the Signs and
Symptoms core CEM:

<<cetype kind="statement"
name="CoughAssert" xmlns="">
<key code="Assertion_KEY_ECID" />
<data domain="CoughType_VALUESET_ECID"
type="cwe" />
. . .
<qual card="0-M" name="periodicity"
type="Periodicity" />
<qual card="0-1" name="course" type="Course" />
<qual card="0-1" name="severity" type="Severity" />
. . .
<mod card="0-1" name="subject" type="Subject" />
<mod card="0-1" name="negationInd"
type="NegationInd" />
<mod card="0-1" name="uncertainty"
type="Uncertainty" />
<att card="0-1" name="observed" type="Observed" />
<att card="0-1" name="reportedReceived"
type="ReportedReceived" />
<att card="0-1" name="verified" type="Verified" />
</cetype>

The basic structure of a CEM consists of a type, a key,
and a value choice; qualifiers, modifiers, and attributions
give further detail. The Type is a coded value that repre-
sents the constraints to which all instances of a given
model will conform (e.g., cwe – coded with extensions,
or pq – physical quantity). The key is a coded value for
the real world concept that is important to what an in-
stance is attempting to describe (e.g., since we are mod-
eling text, Assertion is a common key). Finally, the value
choice is a choice between a “data property” or “items,”
where the former is a derivative of the HL7 version 3
data type “ANY,” and the latter is a sequence of one or
more clinical elements (e.g., “CoughType” is a data prop-
erty, constraining data values).
A qualifier captures information that does not change

the meaning of the value choice (e.g., the “periodicity” of
a cough). A modifier adds information that changes the
meaning of the value choice (e.g., “negationInd” may re-
verse the asserted CoughType). An attribution defines
an action and the contextual information for the action
(e.g., “observed” gives the context of the Cough).
In the end, this work reports, alongside other NLP-

relevant types, a casting of CEMs from the above struc-
ture into a UIMA type system.

Methods
To define our common type system, we began with
the types in the cTAKES v1.1 type system. These types
had primarily been developed ad hoc while doing
information extraction tasks in UIMA. They were there-
fore loosely arranged around a typical information
extraction pipeline (including components such as sen-
tence detection, tokenization, lemmatization, named en-
tity recognition (NER), and negation/status detection).
We analyzed a number of existing UIMA type systems
to find useful types that caused us to augment or modify
the original type definitions. We eventually modified
existing types and categorized them into 4 groupings:
Utilities, Text Spans, Syntax, and Text Semantics. We
also created 3 new groupings: Structured Data, Rela-
tions, and Referential Semantics.
In this breakdown of 7 groupings, we have ensured

that the resulting semantic model distinguishes clearly
between text semantics and referential semantics. This
distinction is important for several reasons. The NLP
task of Named Entity Recognition may define semantics
in terms of a semantic type or even a mapping to an
ontology code (possible with text semantics types), but
additional structure is necessary when populating post-
coordination or attribute templates (possible with refer-
ential semantics types). Furthermore, there is no clear
interpretation for the results of coreference resolution
with only text semantics. Especially in the clinical con-
text, a chain of related text mentions does not define an
event; for example, if a patient has a severe cough with
sputum, but coreferring mentions in the text do not
mention the sputum, this does not mean that there is no
sputum. Finally, deep semantic structure is necessary be-
cause it enables interoperability with all other types of
medical information. With this CEM-based referential
semantic model, structured data and NLP results can
then be used together seamlessly in high-throughput
phenotyping efforts.
The effort in the type system definition was that of

creating types for the referential semantics grouping, in
which our goal was to represent the core CEM tem-
plates. Notably, we created a separate type for each of
the 6 core CEMs. The distinction between qualifiers,
modifiers, and attributions in the core CEMs was
dropped, and all were considered to be features. Com-
mon features between the core CEMs were moved into
the Element supertype. The text semantic model was
adjusted to complement the referential semantic model.
Outside of the semantic model, new types were also cre-
ated for standard NLP tasks, such as constituent and de-
pendency parsing, relation extraction, and temporal
relations.
Overall, the type system design attempts to follow best

practices for UIMA type systems, as recommended by
UIMA’s original developers. These have to do with ease
and completeness of representation, as well as computa-
tional cost. For example, defining a subtype is an effi-
cient way to subset data because indices for types are
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reliably calculated. However, we do not put locally used
(component-specific) types in the CAS, as there is no
garbage collection in UIMA and extra types only bloat
the type system. Where possible, we assumed existing
standards for NLP tasks (e.g., types for constituent
parses should be consistent with Treebank II).

Results
We present the SHARPn common type system in its en-
tirety, as released with cTAKES 2.5. This type system is
an extensive update of the cTAKES type system, with
modifications, restructuring, and additions. While there
are carry-over types from previous iterations of the
cTAKES type systems, use case specific types were
dropped, as they would be local to custom components
at the end of a pipeline.
The type system’s seven groups correspond to 7 name-

spaces. We will thoroughly describe these groups, focus-
ing especially on syntax, text semantics, relations, and
referential semantics with examples to highlight our
contribution.
Notationally, we introduce types with small caps and

in their namespaces (e.g., TEXTSPAN.SENTENCE), but refer
to them informally by just capitalizing just the first letter
(e.g., Sentence). Features (attributes) of each type are
introduced with colons (e.g., SENTENCE:begin). Using the
equivalent data structures outside of UIMA do not
strictly require these namespaces or groupings. Also, in
the following figures, dark gray boxes indicate types are
in a different namespace, but are necessary to fully de-
scribe the inheritance of another type (e.g., UIMA.TCAS.
ANNOTATION).

Structured data types
Unstructured clinical text is generated in the wider con-
text of clinical settings. Structured data can provide
Figure 1 Types and features for 3 namespaces. Structured data types, U
indicates types that are not in the namespace but are included to show in
useful information about the clinical context, both to
improve information extraction and to more easily re-
trieve results. Structured data types are shown on the
left side of Figure 1.

Utility types
This minimal grouping (bottom right, Figure 1)
replaces a type from cTAKES v1.1 called PROPERTY

with the UTIL.PAIR type. Each PAIR:attribute corre-
sponds with some PAIR:value, and a UTIL.PAIRS type
stores multiple ones. This is tacitly a brute-force im-
plementation of a probability distribution as well,
hence the UTIL.PROBABILITYDISTRIBUTION type. More ef-
ficient means of defining probability distributions are
possible, but this is not easily done in a generalizable
type system to be used with UIMA.

Text span types
Text span types shown on the top-right side of Figure 1
are typically discourse-level subdivisions of a text docu-
ment into organizational components. The type DOCU-

MENT spans a whole document and subsumes other text
span types. In UIMA implementations of the type sys-
tem, this DOCUMENT type is by default available from the
UIMA itself (hence the gray box); non-UIMA imple-
mentations would need DOCUMENT to be introduced ex-
plicitly. Other types break down the text into spans of
decreasing size: TEXTSPAN.SEGMENT (e.g., sections of a
clinical note), TEXTSPAN.PARAGRAPH, TEXTSPAN.LIST, and
TEXTSPAN.SENTENCE.

Syntactic types
The syntax namespace in Figure 2 shows two major
groupings: Morphology (light blue) and Syntactic Struc-
ture (darker blue). The Morphology grouping deals with
the internal characteristics of words and borders
tility types, and Text span types. Dark gray background coloring
heritance. Arrows indicate inheritance.



Figure 2 The syntax namespace: types for morphology and syntax.
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between words. It centers around SYNTAX.BASETOKEN, a
supertype for word, punctuation, symbol, newline,
contraction, or number tokens. It includes parts of
speech in BASETOKEN:partOfSpeech, which are grammat-
ical categories, e.g., noun (NN) or preposition (IN) that
use Penn Treebank tagsa with a few additions. BASETOKEN:
normalizedForm stores a final normalized form, including
processes such as lemmatization and abbreviation
expansion.
Because syntactic processing has been well studied in

NLP, the common type system adopts established stan-
dards for the majority of its grammatical types. Phrase-
level syntactic categories found by the process of shallow
parsing (chunking) are stored in SYNTAX.CHUNK types.
The CHUNK:chunkType feature draws from phrasal Penn
Treebank II categories. Many of these phrasal tags
(SYNTAX.ADJP, SYNTAX.NP, SYNTAX.VP, etc.) are included
as child types to SYNTAX.CHUNK for ease of indexing.
More robust syntactic structure is embodied in

SYNTAX.CONLLDEPENDENCYNODE, a dependency parse
node spanning a single BaseToken. This follows the
CONLL-X Shared Task [10] format with 10 features. De-
pendency parses are produced sentence-by-sentence.
Each node of a parsed sentence refers to its syntactic
head, i.e., another ConllDependencyNode pointed to
from CONLLDEPENDENCYNODE:head.
Like shallow parses, deep (constituent) parses can be
represented consistently with Penn Treebank II stan-
dards [11]. Here, we use SYNTAX.TREEBANKNODE and two
convenience subtypes, SYNTAX.TERMINALTREEBANKNODE

and SYNTAX.TOPTREEBANKNODE. The syntactic constitu-
ent can be found in TREEBANKNODE:nodeType or
TREEBANKNODE:nodeValue.
Stanford dependencies [12] are formally triples of two

tokens plus the relationship between them. Thus, they
are represented as SYNTAX.STANFORDDEPENDENCY, bin-
ary relation types that relate heads to dependents,
where the inherited STANFORDDEPENDENCY:arg1 is the
head, STANFORDDEPENDENCY:arg2 is the dependent, and
STANFORDDEPENDENCY:category stores the type of rela-
tion (e.g., nsubj).

Textual semantic types
The main intent of textual semantic types is for spans of
text to house a shallow sense meaning or function.
These types are shown in Figure 3, progressing from
simpler meaning on the left to more complex meaning
on the right.

Context-sensitive annotations
On the left of Figure 3, several simple types indicate
spans of text that are of use in clinical context. The
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TEXTSEM.CONTEXTANNOTATION type is a lightweight,
spanned type that tags the context surrounding an entity
or event. It may be used for quick iteration and search.
The feature CONTEXTANNOTATION:Scope has example
values like “left,” “right,” or “both,” indicating on which
side of a CONTEXTANNOTATION:FocusText the entity or
event might be found.
A set of subtypes of Annotation (DATE, FRACTION,

MEASUREMENT, PERSONTITLE, RANGE, ROMANNUMERAL,
TIME) is included for quick indexing. These are fre-
quently found in clinical texts that report laboratory and
procedure values, proper names with titles, and temporal
information.

Mentions in text
The middle section of Figure 3 has types that are similar
to Named Entities and Events as defined by the Auto-
matic Content Extraction and Message Understanding
Conference (MUC-7) tasks, and emerging ISO stan-
dards. Notably, TEXTSEM.IDENTIFIEDANNOTATION is a span
of text that must be discovered, generalizing traditional
Named Entities. Children of IdentifiedAnnotation are
intended to bridge the gap between a text-centric/shal-
low-semantic view of the data, versus a concept-centric/
deep-semantic view of the data. For example, “Patient
has pain in the abdomen. . . pain increases with pres-
sure” has two (co-referring) text spans for “pain,” but
would have one unified referential semantic representa-
tion. Thus, subtypes of IdentifiedAnnotation each have
an attribute that refers to the deeper semantic represen-
tation, to be described in the Referential semantics
section.
For a shallow semantic representation, IDENTIFIEDAN-

NOTATION:ontologyConceptArr allows an array of hy-
potheses about how the text should be mapped to an
ontology. The array allows (but does not require) users
to utilize techniques that separate word sense disam-
biguation (WSD) from the initial recognition. Other fea-
tures give some measure of how the annotation is
presented in context – IDENTIFIEDANNOTATION:polarity
(stated with negation), IDENTIFIEDANNOTATION:condi-
tional (e.g., “. . . should return if any rash occurs”),
IDENTIFIEDANNOTATION:uncertainty (stated with doubt),
IDENTIFIEDANNOTATION:subject (stated in reference to an
entity, e.g., the patient), and IDENTIFIEDANNOTATION:gen-
eric (stated without a real-world instance, e.g., “lupus
clinic”).
Other administrative features are included as well. The

semantic type (e.g., drugs, disorders, etc.) may be stored
in IDENTIFIEDANNOTATION:typeID; the segmentID and
sentenceID features provide an indexing to the section
and sentence within which the annotation is found; the
means of discovering the IdentifiedAnnotation is stored
in IDENTIFIEDANNOTATION:discoveryTechnique; and for
automatic extraction methods, a confidence score may
be stored in IDENTIFIEDANNOTATION:confidence.
Two subtypes of primary importance are TEXTSEM.

ENTITYMENTION and TEXTSEM.EVENTMENTION. The
former is an IdentifiedAnnotation that refers to a real-
world entity (embodied in ENTITYMENTION:entity). Simi-
larly, EventMentions are spans that refer to real-world
events as captured by EVENTMENTION:event. We have
built in a distinction that Events have a temporal nature
(see REFSEM.EVENTPROPERTIES) whereas Entities do not. In
clinical text, the large majority of relevant mentions are
temporally active.
Other IdentifiedAnnotations may not refer to entities or

events, but may instead represent attributes of those ele-
ments. For example, if a medication is prescribed for one
month, this may be discovered in text as “1 month,” “a
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month,” “1 mo,” etc. We store this text in TEXTSEM.MODI-

FIER and point it to a normalized version in REFSEM.ATTRIB-

UTE. Time annotations have their own subtype as well,
TEXTSEM.TIMEMENTION, since the time stamp of an event is
an important attribute that may or may not be set from text.

Semantic role labeling
Semantic role labeling [13] is a standard NLP task [14] that
gives a shallow representation of the semantics of a sen-
tence. We follow the conventions of PropBank [15] in defin-
ing the semantic roles. TEXTSEM.SEMANTICARGUMENT is
used for the arguments in predicate-argument structures
(SemanticRoleRelations). The SEMANTICARGUMENT:label fea-
tures should contain the type of semantic role (e.g., ARG0,
ARGM) that this argument has (with respect to the predi-
cate). The predicate and other information about the seman-
tic role are available through the SemanticRoleRelation type.
Figure 4 The refsem namespace, with deep semantic types and a mo
We follow PropBank standards for TEXTSEM.PREDICATE
with a few clinical additions. Predicates are typically
verbs and may participate in semantic role relations
(accessible via PREDICATE:relations). The corresponding
TEXTSEM.SEMANTICROLERELATION type embodies the se-
mantic role labeling output as a binary Relation between
SEMANTICROLERELATION:predicate and SEMANTICROLERE-
LATION:argument.
Referential semantic types
The types in Figure 4 are a deep semantic representation
that are meant to refer to something in the real world.
Unlike the text semantics grouping, referential semantic
types do not inherit from Annotation, and they are thus
document-level objects (assuming that one document is
processed per CAS).
del of core CEMs.
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General referential semantics
We begin referential semantics with the REFSEM.ONTOLO-

GYCONCEPT and REFSEM.UMLSCONCEPT types. Ontologies
(e.g., the Systematized Nomenclature of Medicine –
Clinical Terms, or SNOMED-CT) provide precise,
expert-curated semantic specifications for concepts.
IdentifiedAnnotations and Elements may point to
these normalized concept representations to indicate
normalization to clinical concepts. Concepts in the
Unified Medical Language System (UMLS) Metathe-
saurus have a concept unique identifier (CUI) and a
type unique identifier (TUI, i.e., semantic type)
which are curated, normalized codes. For example,
“pain” would have a UMLSCONCEPT:cui = “C0030193”
and UMLSCONCEPT:tui = “T184”. Instead of recreating
these ontological structures within the common type
system, concepts are created by reference to any
existing resource, as needed by an application.
Ontology concepts may exist, irrespective of whether

they are instantiated in a particular clinical document.
To capture and summarize what is actually indicated by
a clinical text, we introduce REFSEM.ELEMENT, our foun-
dational structure for deep semantics in the context of
clinical care. An Element contains some of the same
semantic information as IdentifiedAnnotation types,
namely ELEMENT:polarity, ELEMENT:conditional, ELEMENT:
uncertainty, ELEMENT:generic, and ELEMENT:subject.
However, it assumes a single, disambiguated word sense
to be set as an ELEMENT:ontologyConcept. Because mul-
tiple IdentifiedAnnotations in the text can refer to the
same thing in the real world, there is an ELEMENT:men-
tion array that allows quick access to mapped text. This
illustrates the difference between the textsem and refsem
namespaces; for example, a REFSEM.EVENT would aggre-
gate all the features of co-referring TEXTSEM.EVENTMEN-

TION objects. Note that some of the attributes may
remain unused for subtypes of Element, such as the
ELEMENT:polarity feature for Time and Date.
Similar to IdentifiedAnnotations, Elements have the

non-temporal subtype REFSEM.ENTITY and the temporal
subtype REFSEM.EVENT. In the constrained clinical con-
text, most concepts are discussed as instances with some
temporal component, e.g., Medications, Labs, and Dis-
eases, while AnatomicalSites are Entities.
Other subtypes include REFSEM.TIME, which refers to a

real-world time instance and stores a timestamp in
TIME:normalizedForm. Similarly, REFSEM.DATE repre-
sents dates and puts them in a structured normalized
form with DATE:day, DATE:month, and DATE:year.

Core clinical elements
Although the Element type is general enough to handle
real world entities of many kinds, we take special effort
to develop structure for things in the clinical domain.
SHARPn has identified 6 general NLP-relevant CEMs
that are here converted into types: REFSEM.ANATOMICAL-

SITE, REFSEM.DISEASEDISORDER, REFSEM.LAB, REFSEM.MEDI-

CATION, REFSEM.PROCEDURE, and REFSEM.SIGNSYMPTOM.
These 6 groups are intended to house concepts from
UMLS semantic groups, [16] with a few exceptions;
Signs & Symptoms is a subgroup within Diseases & Dis-
orders, Labs is a subgroup within Procedures, and Medi-
cations are the subset of Chemicals & Drugs that are
present in RxNORM.
In the type system, these clinical elements primarily

differ from each other in their attributes; for example, a
“strength” feature as used in Medications would be ir-
relevant for Procedures.

Core clinical attributes
The REFSEM.ATTRIBUTE type forms the basis for post-
coordination in our clinical semantics. In the current
model, these types simply contain strings or numbers
with units. Instead of strong typing (e.g., lab values must
be “physical quantities” in some standards), default value
sets are for the most part included in a file of constants
that augment the type system. Again, not all Attributes
apply to all Element types; also, some of the important
features in the core clinical element types are not Attri-
butes (e.g., SIGNSYMPTOM:startTime). This means that
the link between Attributes and their respective allow-
able values is not enforced by the type system itself; ex-
perience has shown us that hard-coded value sets tend
to hamper development of downstream application-
specific tools.
A few Attributes are common to multiple core CEMs.

REFSEM.BODYLATERALITY (medial vs. lateral, distal vs.
proximal, etc.) and REFSEM.BODYSIDE (left, right, bilateral)
have to do with relative physical location. The progress
or decline of a condition is marked through REFSEM.
COURSE (changed, increased, decreased, improved, wor-
sened, resolved, unmarked), and explicit indications of
the seriousness of a condition are accounted as REFSEM.
SEVERITY (severe, moderate, slight, unmarked).
Procedures, Labs, and Medications each have more

specific attributes, and these are further documented in
the type system implementation.

Relation types
Relation types in the common type system connect data
structures at both the level of text semantics (connecting
to the textsem namespace) and referential semantics
(the refsem namespace). Shown in Figure 5, both of
these are based on the RELATION.RELATION type. Relations
themselves are not tied to specific spans of text. The Re-
lation type ensures that subtypes all have a “category” at-
tribute (the label or semantic type of the relation), and
the ability to represent negative (“polarity”) or uncertain



Figure 5 The relation namespace, with both text relations (spanned) and referential semantic (unspanned) relations.

Table 1 Distribution of types in the common type system

Type subdivisions # of types # of features

Structured 4 24

Syntax 26 33

RefSem 31 96

TextSem 17 33

TextSpan 5 5

Util 3 3

Relation 14 13

Total 100 207
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(“uncertainty”) relationships. For example, “cancer has
not spread to the lymph nodes” would yield a negative
“locationOf” relationship.
Text relation subtypes (RELATION.BINARYTEXTRELATION

and RELATION.COLLECTIONRELATION) use the RELATION.
RELATIONARGUMENT type, which wraps an Annotation
and therefore implies a text span. Subtypes of Binary-
TextRelation, such as RELATION.UMLSRELATION, tie to-
gether two text spans and are further distinguished (e.g.,
when a medication “treats” a disease) via the inherited
RELATION:category.
Coreference (encapsulated in RELATION.COREFERENCERE-

LATION) is another text relation, and is particularly im-
portant because it bridges between the text semantics
and referential semantics worlds by indicating that two
text spans (mentions) actually refer to the same under-
lying real-world instance.
RELATION.ELEMENTRELATION and RELATION.ATTRIBUTER-

ELATION extend the Relation type rather than the Binary-
TextRelation type; thus, they operate without a spanned
location. The types of relationships they are designed to
express are those between real-world objects. For ex-
ample, a coreference relation would be inappropriate for
this type of relation, because it links multiple textual
mentions as referring to the same entity. This type of re-
lation might instead be a higher-level relationship be-
tween two such coreference-resolved entities.
ElementRelations are used for things like RELATION.

TEMPORALRELATION that link two Time, Date, or Event
annotations. Other subtypes of ElementRelation include
specific UMLS relations between referential semantic
objects (rather than text spans): RELATION.DEGREEOF,
RELATION.AFFECTS, RELATION.LOCATIONOF, RELATION.RESUL-
TOF, and RELATION.MANIFESTATIONOF.

Statistics
As shown in Table 1, the defined common type system
contains a total of 100 types and 207 attributes. This is
expanded from 60 types in cTAKES v1.1 and 97 types in
our preliminary common type system. 38 of the types
are modified, 22 are deleted (from Use Cases), and 58
are newly defined as detailed in previous sections. The
average number of attributes per type has also increased
from 1.63 in cTAKES v1.1, to 2.07 attributes per type.
The detailed semantic CEMs are a significant factor
in this.

Discussion
Semantic pipeline example
The foregoing type system allows for NLP techniques to
reach a depth of clinical semantic normalization that
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was not previously possible, and which we believe will
be the primary gathering point for interoperable systems.
We illustrate this semantic depth here by an example,
which considers the clinical text: “Chief complaint: se-
vere cough and fever. Cough started 2 days ago, no
expectoration.”
Figure 6 shows semantic annotation that has typically

been discovered in clinical NLP algorithms. In the figure,
we have grouped instantiated types by their namespaces
(text semantic types – green, relation types – red). Itali-
cized features are inherited features, but many are omit-
ted for clarity. Small black boxes indicate references to
other, non-primitive data types. So, for example, CORE-

FERENCERELATION:arg1 has the leftmost RelationArgu-
ment as its value.
Text semantic types that would be found by some

NER procedure would include EventMentions for both
“cough” and “Cough.” Each of these would have a begin
point and an end point in the text string, an identifier, a
type, possible ontology normalizations via IDENTIFIEDAN-

NOTATION:ontologyConceptArr, and possibly other fea-
tures. A TimeMention would similarly be associated
with “2 days ago,” and RelationArguments and a Binary-
TextRelation would be used to identify that “2 days ago”
is an attribute of “Cough.”
This level of semantic information is where many NLP

systems stop. Most importantly, there is one real-world
“cough” but two mentions. As a corollary, while the first
mention is associated with “severe,” it does not immedi-
ately know about the temporal information of “cough.”
Thus, without deeper semantics, this is insufficient to
interoperate with structured data (e.g., for the SHARPn
high throughput phenotyping effort).
Figure 6 Example results of NER and relation detection. A shallow sem
Boxes show instances of types from the common type system associated w
example-specific values are shown. Small black boxes refer to instances of
ontologyConceptArr.
We show in Figure 7 the referential semantics that are
not easily resolved without our type system. Here, the
“cough” and “Cough” EventMentions have been resolved
to a single “cough” SignSymptom type, ostensibly with
severity specified, start time filled in, a disambiguated
IDENTIFIEDANNOTATION:ontologyConcept, and backpoin-
ters to the mentions (links not shown for clarity). The
Time type has been normalized to “09/01/2006” against
the date of the document. Also, a referential semantic
relationship shows that the “cough” is not manifesting it-
self with “expectoration.”
While this information is available in Figure 6, mul-

tiple links and resolution steps must take place before
there is truly a clinical semantics that will interact cor-
rectly with structured data for high-throughput phenoty-
ing. In this common type system, we have provided a
framework for including these crucial steps.
Practical applications may extend the type system be-

yond Figure 7. New local types may be created; for
instance, creating a COUGH type as a child of SIGNSYMP-

TOM would allow an end application to consider all kinds
of coughs (barking cough, whooping cough, etc.) jointly,
but differentiated from other SIGNSYMPTOMs. Addition-
ally, use cases may be interested in introducing deep
semantic templates parallel to CEMs that are not inher-
ently clinical, such as GEOGRAPHICLOCATION or PERSON.

Related work
As mentioned, comprehensive NLP systems typically de-
fine the data structures they understand and populate.
Thus, there are many examples of existing type systems,
but the SHARPn NLP type system is unique in its cov-
ering of both structured semantics and lower-level
antic representation with named entities and textual relationships.
ith the example sentence. For clarity, only relevant features with
non-primitive data types; the actual instances for EventMention:



Figure 7 Example results of deep semantic processing. A deep semantic representation with coreferring mentions resolved, attributes
combined, and a relationship inferred. The relevant SIGNSYMPTOM:ontologyConcept instances (disambiguated concept identifiers) have been
omitted. In this example, we have omitted the line from SIGNSYMPTOM:mention to EVENTMENTION instances since they are implied by the links
from EVENTMENTION:event to SIGNSYMPTOM.
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features. HITEx [17] is GATE-based, and the majority of
the types used there can be expressed within our type
system (using syntax, text span, and text semantic types).
The VA’s more recent UIMA-based v3NLP system builds
off of this and additionally includes many SHARPn
types. U-Compare is based on Colorado BioNLP types,
which abstract the semantics away, whereas SHARPn
types explicitly capture semantics of the mentions in
CEM templates, as described below. Another type sys-
tem is available through the JULIE Lab UIMA Compo-
nent Respository (JCoRE) consists of NLP components
developed by the JULIE lab and those available in the
public domain. Our SHARPn type system aligns with
JCoRE with respect to syntax, mention, and text span
types. MedKAT [18] contains specialized structures to
capture named entities from pathology notes; these
structures are left to be locally defined in the SHARPn
type system.
It should be noted that our proposed CEM-based se-

mantic structure differs from the ontology representa-
tions or NER output that are present in many of these
existing type systems. Previous type systems represented
semantics as simply a mapped ontology code, or the
named entity text along with semantic type. Ontology-
mapped text is supported in our type system, but it
shallowly defines the meaning and lacks the ability to
capture attributes of a concept or to normalize multiple
instances of the same concept. Instead, the SHARPn
type system includes a highly-refined deep semantic
structure, allowing for post-coordination and nuance.
Some systems like MedLEE (Medical Language Extrac-
tion and Encoding System), ONYX, and MetaMap have
included well-developed types for domain semantics
[19-22]. These systems are well tuned for their own pur-
poses, but often leave out other structures (e.g., semantic
role labels) tied to more advanced NLP tasks.

Conclusion
We have presented a comprehensive type system for
Clinical NLP – a specification of data types with an end
goal of deep computational semantic processing. The se-
mantic representation presented here is a conglomer-
ation of semantic models, especially Clinical Element
Models. Additionally, elements of previous type systems
and language processing standards for preprocessing,
morphology, and syntax are included in the type system.
We have illustrated by example the means by which

deep semantics can be obtained in this type system. Mul-
tiple possible methodological architectures are compatible
with this type system. It is hoped that this emerging, prac-
tical type system will be used by the community at large
as it provides a nurturing context for a diversity of activ-
ities in Clinical NLP.

Endnotes
aSee http://www.ldc.upenn.edu/Catalog/docs/LDC95T7/

cl93.html.
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