Email updates

Keep up to date with the latest news and content from Journal of Biomedical Semantics and BioMed Central.

This article is part of the supplement: Proceedings of the Bio-Ontologies Special Interest Group Meeting 2009: Knowledge in Biology

Open Access Proceedings

Building a biomedical ontology recommender web service

Clement Jonquet*, Mark A Musen and Nigam H Shah

Author Affiliations

Center for Biomedical Informatics Research, Stanford University, CA 94305, USA

For all author emails, please log on.

Journal of Biomedical Semantics 2010, 1(Suppl 1):S1  doi:10.1186/2041-1480-1-S1-S1

Published: 22 June 2010

Abstract

Background

Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use.

Methods

We present the Biomedical Ontology Recommender web service. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is coverage, or the ontologies that provide most terms covering the input text. The second is connectivity, or the ontologies that are most often mapped to by other ontologies. The final criterion is size, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO) Annotator web service. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal.

Results

We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated ‘very relevant’ by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version) is available to the community and is embedded into BioPortal.